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Life-Cycle Consumption and Portfolio Choice with an Imperfect Predictor

Abstract

I study the e�ect of observable predictors that imperfectly predict conditional

expected stock returns on optimal life-cycle consumption and portfolio choice in

the presence of undiversi�able labor income risk. Investors �lter the unobserv-

able expected stock returns from realized predictive variables and stock returns.

Young stockholders hold more conservative portfolios, better matching empirical

observations, than models assuming a predictor perfectly delivering the condi-

tional expected stock return or models assuming i.i.d. stock returns. Welfare

losses from ignoring imperfect predictability can be substantial.

(JEL D14, G11, G17)

Key Words: Portfolio Choice over the Life Cycle, Stock Market Mean Rever-

sion, Filtering, Stock Market Predictability, Imperfect Predictor.
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1 Introduction

Optimal life-cycle portfolio choice is a classic problem in �nancial economics, encoun-

tered by every investor. Samuelson (1969) argues that the investment decision is inde-

pendent of wealth and consumption-saving decisions. However, Samuelson's conclusion

is con�ned to the assumption of independent and identically distributed (i.i.d.) stock

returns and the absence of undiversi�able, risky labor income. Cocco et al. (2005) solve

for optimal portfolio choice, consumption and saving decisions numerically and show

that the labor income stream is a key factor for optimal life-cycle portfolio choice with

mortality risk, borrowing and short-sale constraints, and time-separable power utility

preferences. Their �ndings provide rationale for age-varying investment advice such

as recommending target-date funds (TDFs) that reduce exposure to stocks as retire-

ment approaches.1 These authors, however, assume that the stock returns are i.i.d., a

classical view meaning that the expected return is constant over time.

Nevertheless, recent empirical studies provide evidence supporting the predictabil-

ity of stock returns. Many papers �nd that a number of variables forecast stock re-

turns. The main method is a simple predictive regression: if we can �nd |b| > 0

in rt+1 = α + bqt + zt+1, then we know that Et (rt+1) = bqt. This implies that the ex-

pected stock return can be perfectly predicted by the predictor. The popular predictors

(qt) provided by the literature are the dividend/price ratio(D/P ), earnings per share

(EPS) or consumption-wealth ratio (CAY ).2 Since these predictors themselves follow

a persistent auto-regressive process (AR model), the rt essentially is a mean reversion

process.3

1Heaton and Lucas (2000), Viceira (2001), Haliassos and Michaelides (2003) and Gomes and
Michaelides (2005) also study the e�ect of labor income risk on portfolio choice while ignoring the
predictability of stock returns.

2See Lettau and Ludvigson (2001) and Lan (2015).
3For instance, Campbell (1987) and Fama and French (1988) show that dividend/price ratios predict

stock returns. Campbell and Shiller (1988a) also make this point by proposing the following regressions:{
rt+1 = rf + bµt + zt+1

µt+1 = a+ βµt + εt+1

,

[
zt+1

εt+1

]
∼ Normal (0,Ω), where rt+1 denotes the real stock market

return from time t to t+ 1, µt is the predictor such as the dividend/price ratio at time t, α and β are
the regression's intercept and slop coe�cients of the predictor, rf is the real risk free interest rate and
zt+1 and εt+1 are the white noises following a bi-variate normal distribution with mean of zero and
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In response to the evidence on the stock market predictability, various papers have

studied its implications for optimal portfolio choice and consumption.4 Michaelides

and Zhang (Forthcoming) build a model in which an investor chooses consumption

and optimal asset allocation over the life cycle to maximize an Epstein-Zin-Weil pref-

erence function assuming that the dividend yield can perfectly predict the expected

stock returns (hereafter, the perfect predictor model). This model, however, seems

restrictive because it assumes that an observable predictor such as the dividend yield

can perfectly predict expected stock returns. This assumption can be criticized for data

mining, non-robustness of test statistics and incorrect inference in small samples. Goyal

and Welch (2008) re-examine the performance of predictors such as the dividend yield

and �nd that these predictors are both weak in-sample, and out-of-sample, indicating

that the predictability of expected stock returns is quite uncertain. It seems more likely

that the predictors are noisy proxies, in that they are correlated with the time-varying

expected stock returns but can not predict them perfectly.5

More recently, the idea that the predictive relation between the predictor and ex-

pected stock returns is quite uncertain has gained more ground. For example, Xia

(2001) assumes that the predictability parameter (b) in the predictive regression is

ambiguous. This uncertainty in b is just one speci�c example that the expected risk

premium is hard to precisely observe. Pastor and Stambaugh (2009) generalize Xia

(2001) by assuming that the current expected stock return is unobservable and the pre-

dictor is imperfect so that the estimation of expected stock returns using the predictive

regression omits some important features. In fact, the unexpected stock returns nega-

covariance structure of Ω. When β = 0, this regression becomes the i.i.d. stock return model. Fama
and French really focus on the importance of the D/P on long-time horizon. These observations show
that the predictability of stock return is economically and statistically signi�cant phenomenon that
can not be dismissed. Fama and French (1989) is an excellent summary and example that documents
and illustrates the time variation of expected stock returns.

4Kim and Omberg (1996), Brennan et al. (1997), Brandt (1999), Campbell and Viceira (1999),
Balduzzia and Lynch (1999), Campbell et al. (2001, 2003), and Wacher (2002) show that stock market
risk premiums change materially with respect to the predictive factor(s) and analyze the implications
for optimal portfolio choice.

5Ang and Bekaert (2007) also examine the predictive power of the dividend yield for forecasting the
excess stock returns. They �nd that the univariate dividend yield regression provides a rather poor
proxy to the true expected stock return.

4



tively correlate with the innovations in the unobservable expected stock returns, when

the stock returns exhibit mean reversion (Pastor and Stambaugh (2012)). Pastor and

Stambaugh (2009) construct an imperfectly predictive system with noisy predictors to

estimate the expected stock returns and �nd that this imperfection has a signi�cant

e�ect on the conditional expected stock returns.

How does the presence of such imperfect predictability a�ect optimal consumption

and portfolio choice for a stockholder over the life cycle? In this paper, I solve a life-

cycle portfolio choice model with an imperfect predictor, jointly modeling an imperfect

predictive system, liquidity constraints and non-diversi�able background labor income

risk to analyze the normative implications for life-cycle consumption and portfolio choice

using Epstein-Zin (1989) preferences (hereafter, the imperfect predictor model).

The key feature of this model is to include the imperfection in the predictive relation

of stock returns model to understand how this type of uncertainty a�ects saving and

portfolio choice over the life cycle.

When calibrated to the observed dividend yield and stock returns from 1946 to

2015, under the imperfect predictive system of stock returns, the portfolio allocation

is more conservative than that in the perfect predictor model or in the i.i.d. stock

returns model. This result substantially alters one of the main insights of models

ignoring imperfect predictability. Speci�cally, such models predict that "stocks are for

the young" and such advice has been popularized by Target Date Funds (TDFs) that

advise a more aggressive asset allocation in stocks when young and a gradual reduction

in this exposure as the investor gets older. With imperfect predictability, consistent

with Pastor and Stambaugh (2012), stocks become more volatile in the long run, and

therefore young households hold more conservative (balanced) portfolios.

Interestingly, this prediction of the imperfect predictor model is more consistent

with empirical observation than either the i.i.d. stock returns or the perfect predictor

models. When compared with the data from the U.S. Survey of Consumer Finances

(hereafter, SCF), the imperfect predictor model matches the data better than either
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the perfect predictor model or the i.i.d. stock returns model. Speci�cally, in the SCF

data stockholder portfolios are balanced between bonds and stocks. Recently, Wachter

and Yogo (2010) generate balanced portfolios through nonhomothetic utility over basic

and luxury goods. In this paper, the balanced portfolio early in life arises due to the

additional stock market uncertainty arising from imperfect predictability.

From all the underlying parameters studied, the main parameters that materially

a�ect the optimal consumption and investment choice are the volatility of the unobserv-

able expected stock return, the persistence of the unobservable expected stock returns

and the correlation between the innovations to stock returns and shocks to unobserved

expected stock returns. Therefore, we should pay more attention to these parameters

when making investment decisions. I also experiment with respect to the correlation

between permanent earnings shocks and stock market innovations, the correlation be-

tween innovations to stock returns and shocks to the dividend yield and the correlation

between shocks to the dividend yield and innovations to the unobserved expected stock

returns. I �nd that these correlations do not substantially change wealth accumulation

and consumption, but they do signi�cantly alter the portfolio allocation.

These �ndings in�uence the design of target date funds (TDFs) because market

timing through the utilization of di�erent information a�ects optimal portfolio choice.

The presence of imperfect predictability a�ects tactical asset allocation and alters the

prediction of models where investors expect either i.i.d. stock returns or use a model

with a perfect predictor to compute expected stock returns. Therefore, the imperfection

of the predictor signi�cantly changes the asset allocation decision, with potentially

signi�cant implications for the design of optimal TDFs.

To illustrate the importance of taking imperfect predictability into account when

designing TDFs, I compare the welfare across di�erent models by computing the con-

sumption certainty equivalent under di�erent settings. Speci�cally, I simulate 10,000

individual life histories assuming that the data generating process of stock returns is

an imperfect predictive system. In the imperfect predictor model, the investor chooses
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the investment policy according to the expected return �ltered from the observed data.

On the contrary, investors using the perfect predictor model or the i.i.d. stock returns

model make investment decisions without caring about any observed stock returns.

As to the investors using the Vanguard TDFs investment rules (hereafter, Vanguard

TDF model), they adjusts their portfolio allocation only depending on age. I can then

calculate the ratio of value functions from the imperfect predictor model to the ones

from the other models and report the consumption certainty equivalent based on this

ratio. In this way, I can compare the change in investor welfare between the imperfect

predictor model and the other three models: the perfect predictor model, the i.i.d.

stock returns model, and the Vanguard TDF model.

The perfect predictor model has the smallest welfare loss, and the i.i.d. stock re-

turns model generates the largest welfare loss. The Vanguard TDF model obtains the

second largest welfare loss. All of these welfare losses vary with the correlation between

unexpected returns and shocks to the predictors, and increase as this correlation ap-

proaches 1. These losses are maximized at around age 50 when the increase in average

wealth accumulation slows down and the net saving rate (the di�erence between labor

income and consumption) turns negative.

Where do these welfare rankings come from? I show that these substantial welfare

losses relative to the baseline can be explained by the di�erences in the �rst two mo-

ments of household consumption. The imperfect predictor model has the highest mean

consumption and volatility of consumption, and the i.i.d. stock returns model generates

the lowest mean consumption and volatility of consumption over the working life. In

the middle is the perfect predictor model.

The paper is organized as follows. Section 2 explains the theoretical model in

the paper and a rough description of the numerical solution. Section 3 illustrates the

estimation method and discusses the calibration. Section 4 builds a baseline model with

the risky labor income and Epstein�Zin preferences to study the e�ect of the imperfect

predictive system on the portfolio choice over the life cycle, Section 5 contains the
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welfare analysis across di�erent models including the TDFs and Section 6 concludes.

2 The Model

2.1 Model Speci�cation

2.1.1 Preference Model

I denote adult age by t (t ∈ [20, 100]). The investor chooses the portfolio and consump-

tion policies to maximize the following Epstein-Zin preferences:


Vt = max

(ct,αt)

{
(1− β)C

1−1/ψ
t + β [<t (Vt+1)]

1−1/ψ
}1/(1−1/ψ)

<t (Vt+1) =
[
Et
(
pt+1V

1−γ
t+1 + b (1− pt+1)X

1−γ
t+1

)]1/(1−γ) (1)

where Vt is the continuation value at age t, <t is the uncertainty aggregator, Xt+1

is the terminal wealth if the investor is dead at age t+1, β is the discount factor, ψ

is the elasticity of inter-temporal substitution (hereafter, EIS), γ is the risk aversion

parameter, b is the strength of the bequest motive and pt+1 is the conditional probability

of surviving next period conditional on having survived until age t.

2.1.2 Labor Income Process

Following the same method as Cocco et al. (2005) and Carroll (1997), I build the labor

income process before retirement as follows:

Yit = Y p
itUit (2)

Y p
it = exp [g (t, Zit)]Y

p
it−1Nit (3)

where g (t, Zit) is a deterministic function of age and household i's characteristics Zit,

Y p
it is a permanent component with innovation Nit of household i's age t labor income,

and Uit is a transitory component of household i's age t labor income.
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In equations (2) - (3), I assume that ln (Uit) and ln (Nit) are independent and iden-

tically distributed with mean {−0.5σ2
u,−0.5σ2

n}, and variances σ2
u and σ

2
n, respectively.

As to Y p
it , ln (Y p

it ) evolves as a random walk with a deterministic drift, g(t, Zit). For

simplicity, retirement is assumed to be exogenous and deterministic, with all households

retiring in time period K, corresponding to age 65 (K = 46). Earnings in retirement

(t > K) are given by Yit = λY p
iK , where λ is the replacement ratio (λ = 0.68) of the

last working period permanent component of labor income.

Durable goods, and in particular housing, can provide an incentive for higher spend-

ing early in life. We exogenously subtract a fraction of labor income every year allocated

to durables (housing), and this fraction includes both rental and mortgage expenditures.

This empirical process is taken from Gomes and Michaelides (2005) and is based on

Panel Study Income Dynamics (hereafter, PSID) data. We choose not to model explic-

itly the returns from housing following the empirical evidence (e.g., Cocco and Lopes

(2015) and references therein) that households tend not to decumulate housing as fast

as life-cycle models predict. A prominent explanation tends to be a psychological ben-

e�t from continuing to own one's house, an explanation that is consistent with the

low observed demand for home equity conversion mortgages (Davido� (2015)). For

these reasons we do not explicitly model the potential e�ects of housing returns, and

focus instead only on investments of liquid �nancial wealth for rich households (that

empirically tend to be both stockholders and homeowners).

For convenience, I will take logarithms on both sides of (2) and (3) while solving the

investor's problem. Hence, log (Y p
it ) = g(t, Zit) + log

(
Y p
it−1
)

+ log (Nit) and log (Yit) =

log (Y p
it ) + log (Uit).

2.1.3 Stock Return Predictability Model

I assume that there are two assets in which the investor can invest, a risk-free asset,

such as T-bills, and a risky asset, such as stocks. The risk free asset has a constant gross

real return of rf , and the risky asset has a gross real return rt. As to modeling the gross
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real return of risky asset, I follow the idea of Pastor and Stambaugh (2009) that the

expected stock returns are unobservable and that investor must �lter these expected

stock returns from the other observable information. Denote (rt, qt, µt) as the stock

return, the predictor and the unobservable expected stock return, respectively. Then,

an imperfect predictive system can be de�ned as follows:

µt+1 = αµ + φµµt + εt+1 (4)

rt+1 = rf + µt + zt+1 (5)

qt+1 = αq + φqqt + vt+1 (6)

where

[
εt+1, zt+1 vt+1

]
∼ Normal (0,Ω) and Ω =


σ2
ε σzε σvε

σ2
z σzv

σ2
v

.

This imperfect predictive system is a generalization of the classical predictive re-

gression. The unobservable expected stock return (µt) follows a simple AR(1) process

described by equation (4). Equation (5) de�nes the next period's stock return (rt+1)

as a sum of the risk free rate (rf ), the unobservable expected stock return (µt) and an

innovation term (unexpected stock return, zt). Equation (6) assumes that the predictor

(qt) evolves in a manner of a persistent AR(1) process, which is a standard assumption

in the literature about the predictability of stock returns. This model is consistent with

a variety of economic models in which the expected return not only varies over time

but also exhibits mean reversion.

Based on this imperfect predictive system, the investor must �lter out µt from

the other observable variables (rt, qt). Applying the simplest �ltering algorithm (see

theorem 7.1 in the appendix, the conditional distribution of a multivariate normal

distribution), the �rst two conditional expected moments of µt can be rewritten as
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E (µt|dt) = Er + ΣµdΣ
−1
d


 rt − rf

qt

−
 Er

Eq


 (7)

V ar (µt|dt) = σ2
µ − ΣµdΣ

−1
d Σ′µd (8)

where dt = [rt, qt], Σµd = [σµr, σµq] and Σd =

 σ2
r σrq

σrq σ2
q

.
(7) and (8) can be further simpli�ed as:

E (µt|[rt, qt]) = µ̂t|t = Er + κr [rt − rf − Er] + κq [qt − Eq] (9)

V ar (µt|[rt, qt]) = σ2
µ − κrσµr − κqσµq (10)

where κr =
σµrσ2

q−σrqσµq
σ2
rσ

2
q−σ2

rq
< 0, κq = σ2

rσµq−σrqσµr
σ2
rσ

2
q−σ2

rq
> 0, Er = αµ

1−φµ , Eq = αq
1−φq , σ

2
r = σ2

µ+σ2
z ,

σ2
µ = σ2

ε

(1−φ2µ)
, σ2

q = σ2
v

(1−φ2q)
, σµr = ρzεσzσε + σ2

ε

(1−φ2µ)
, σµq = ρvεσvσε

(1−φµφq) and σrq = ρzvσzσv +

φqσvε
(1−φµφq) .

(9) and (10) say that the conditional moments of µt consist of three information

sources. The �rst source is the unconditional mean of risk premium (Er). The second

source is the current stock return (rt), and the last one is the current dividend yield

(qt). Similarly, the conditional variance of µt can be decomposed into three parts: the

variance of unobservable expected stock returns
(
σ2
µ

)
, the covariance between the unob-

servable expected stock returns and the realized stock returns (σµr) and the covariance

between the unobservable expected stock returns and the dividend yield (σµq).

Several important conclusions can be drawn from (9) and (10). First, κr is negative,

which implies that an unexpected increase in the stock return leads to the decrease in

the next period's expected stock return. κr , therefore, measures the mean reversion

e�ect. In contrast, the positive κq measures the predictability e�ect because a positive

shock to the dividend yield predicts an increase in the next period's expected stock
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return and vice versa.

Second, when ρµq = 1, Er = Eq, σµ = σq and ρµr = ρrq, κr = 0 and κq = 1. (9) and

(10), therefore, become

µ̂t|t = E (µt|[rt, qt]) = qt (11)

V ar (µt|[rt, qt]) = 0 (12)

(11) and (12) implies that Et (rt+1) = qt, namely, the predictor perfectly predicts

the expected stock return. The imperfect predictive system ((4) - (6)) degenerates into

the classical predictive regression used in Campbell and Shiller (1988a), Campbell and

Viceira (1999), Michaelides and Zhang (Forthcoming) etc. Similarly, the i.i.d. stock

returns model is also a special case of this imperfect predictive system. In contrast,

if |ρvε| < 1 and ρvε 6= 0, the predictor (qt), is not a perfect proxy of µt, and the

information from rt and qt enters the conditional expected µt according to (9) - (10).

Hence, the expected stock return of the next period is not completely determined by

the observed predictor so that uniquely relying on the this predictor can deliver an

inaccurate estimation.

Third, the conditional moments of the unobservable expected stock return depend

on both the observed data (rt, qt) and the correlations among the unobservable expected

stock return, the observed predictor and the current stock return (ρµr, ρrq, ρµq). This

also explains why the correlation between the innovations to observable predictor and

the shocks to current stock return does not play a key role in the perfect predictor

model solved by Michaelides and Zhang (Forthcoming)6. The perfect predictor model

rule out the e�ect of these correlations from calculating the conditional expected stock

return of the next period (Et [rt+1] = qt) and conditional variance (V art [rt+1] = σ2
z),

6Michaelides and Zhang (Forthcoming) use the perfect predictor model/classical predictive regres-
sion to solve the life-cycle portfolio choice problem and �nd that only the correlation between the
innovations of stock returns and the permanent earning shocks of labor income (ρzn) materially a�ects
the optimal portfolio choice.
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which means that these correlations only have a small e�ect on the optimal investment

and consumption decision.

2.2 The Investor's Optimization Problem

At the beginning of period t, investor i has a wealth Wi,t. Then, during this period,

labor income Yi,t is realized. Following Deaton (1991), cash on hand Xi,t can be de�ned

as Xi,t = Wi,t + Yi,t. Then, the investor must determine how much to consume, Ci,t

and how to invest the remaining savings in stocks Si,t and the risk free asset Bi,t. In

the next period, before earning period t+ 1's labor income, the wealth at t+ 1 is given

by Wi,t+1 = Si,t (1 + rt+1) +Bi,t (1 + rf ) = αit (1 + rt+1) + (1− αit) (1 + rf ) , where Si,t

is the investment in the stock market in the previous period, Bi,t is the investment in

risk-free asset in the previous period and αi,t is the share of wealth in stocks in the

previous period and de�ned as αi,t =
Si,t

Bi,t+Si,t
. The budget constraint of investor i at

time t is Si,t +Bi,t = Wi,t + Yi,t − Ci,t.

The investor maximizes the household's utility subject to the budget constraint and

the constraints (2) through (6) with the non-negativity restrictions on Ci,t, Bit and Si,t.

These non-negativity constraints on Bit and Si,t guarantee the investor not to borrow

against his/her future labor income or retirement wealth.

In this optimization problem, µt is unobservable and the investor has to estimate

it through (9) - (10) conditional on the observed information (rt, qt) available at time

t. The state variables of the investor's problem are t, Xi,t, µ̂t|t and Y p
it , the control

variables are Ci,t and αi,t, and the policy functions are de�ned as Ci,t
(
Xi,t, Y

p
i,t, µ̂t|t

)
and αi,t

(
Xi,t, Y

p
i,t, µ̂t|t

)
.

Since, the problem uses the Epstein-Zin utility, the value function is homogeneous

with respect to the current permanent part of labor income. This property allows us to

normalize the investor's cash on hand (Xi,t) by dividing Y
p
i,t, which means the number of

state variables is reduced by one. The policy functions, therefore, become ci,t
(
xi,t, µ̂t|t

)
and αi,t

(
xi,t, µ̂t|t

)
, where xi,t =

Xi,t
Y pi,t

.
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2.3 Numerical Solution

The optimization problem faced by the investor can be rewritten as the following opti-

mization model:

Vt
(
xi,t, µ̂t|t

)
= Max

(ci,t,αi,t)


(1− β) c

1− 1
ψ

i,t + β
[{
Et
(
pt+1V

1−γ
t+1

(
xi,t+1, µ̂t+1|t+1

)
+b (1− pt+1)x

1−γ
i,t+1

)} 1
γ

]1− 1
ψ


1

1− 1
ψ

s.t.



µt+1 = αµ + φµµt + εt+1

rt+1 = rf + µt + zt+1

qt+1 = αq + φqqt + vt+1

ln (Nt+1) = µn + nt+1

ln (Ut+1) = µu + ut+1

xi,t+1 =
Y pi,t
Y pi,t+1

(rt+1αi,t + rf [1− αi,t]) (xi,t − ci,t) + Ui,t+1

(13)

where µ̂t|t is a linear function of (rt, qt) and updated through formula (9), cit is the

normalized consumption of household i at time t, xit is the normalized cash on hand of

household i at time t and αi,t is the risky asset allocation of household i at time t.

This problem has no analytical solution. I, therefore, solve this problem numerically

by using backward induction. In the last period (hereafter, T), the optimal policy

functions are easy to solve because the investor does not invest any more and consumes

all wealth except for the saving bequeathed to heirs. Then, I can now replace the value

function in the Bellman equation (13) with the optimal policy function solved at time

T and calculate the optimal policies for T-1. Repeating this procedure up to age 20, I

can obtain the policy functions at each age.

In the backward induction algorithm, grid search is used to �nd the optimal policy

functions of the problem (13) based on a �ne discrete approximation of the following

VAR model:
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

µt+1 = αµ + φµµt + εt+1

rt+1 = rf + µt + zt+1

qt+1 = αq + φqqt + vt+1

ln [N ]t+1 = µn + nt+1

(14)

I use Tauchen and Hussey (1991) method to discretize the state space of the VAR model

(14) and calculate the transition probabilities among these grid points assuming that

they follow a Markov Chain. Then, using the grid points from the discretization of

(14)7, I can construct the next period's return by:


rt+1|t = rf + µ̂t|t + zt+1 + wt+1

µ̂t|t = Er + κr [rt − rf − Er] + κq [qt − Eq]
(15)

where wt+1 is an independent innovation term introduced by the �ltering algorithm

and follows N (0, V ar {µt|[rt, qt]}).

Finally, I iteratively apply the backward induction algorithm to solve the consump-

tion and investment policy functions of the optimization problem (13) based on rt+1|t

from age T to age 20. The details of numerical implements are the same as the Online

Appendix of Michaelides and Zhang (Forthcoming).

I implement this numerical algorithm using Fortran 2003 on a Windows worksta-

tion8. For accelerating the time of computation, I parallelize this algorithm according

to the state variables using OpenMP9, which makes the problem can be solved in twenty

four hours.

7The temporary part of labor income (ln (Ut)) is not correlated with the other variables. Its grid
points are, therefore, generated independently.

8Intel Xeon E5-2699 v3 2.3GHz RAM 256GB
9OpenMP is a set of compiler directives, library routines, and environment variables to enable

programmers to develop parallel applications for shared memory multiprocessor computer.
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3 Empirical Analysis

3.1 Data

The stock market data used in this paper comes from the Center for Research in Secu-

rities Prices (CRSP). I screen out the annual one year bond return, annual CPI growth

rate, monthly value-weighted cumulative return of S&P 500 and monthly value-weighted

ex-return of S&P 500 from Dec. 31st, 1946 to Dec. 31st, 2015. Next, I construct an-

nual cumulative and ex-dividend S&P 500 price index based on the monthly data with

the initial cumulative price of 1.00. Using the di�erence between annual cumulative

and ex-dividend price index, I can easily obtain the annual cumulative return and an-

nual ex-dividend return. The annual dividend is calculated by multiplying the lagged

total annual price index by the di�erence between the annual cumulative return and

ex-dividend return. Finally, I compute the real return as the di�erence between the

annual cumulative return and annual CPI growth rate. Table 1 shows the summary of

stock market data.

The empirical portfolio holding data are based on the SCF 2007. The empirical

asset holding is de�ned as either α = equity/(equity + bond) or α = equity/(equity +

bond+ liquidity), where liquidity is the �nancial wealth with high liquidity such as the

cash.

3.2 Parameter Estimation

The �rst step of solving the investor's optimization problem is to estimate the param-

eters of the equation (4) - (6). For estimating this VAR model through the observed

data, I transform it into the following VARMA(1,1) model:


rt+1 − rf = (1− φµ)Er + φµ(rt − rf ) + nvt − (φµ −m)ωt + ωt+1

qt+1 = (1− φq)Eq + φqqt + vt+1

(16)
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where m and n are constant parameters derived based on the equations (4) - (6) and

ωt is forecast error
(
ωt = rt − r̂t|t−1

)
and serially uncorrelated.

TABLE 1

Descriptive Statistics

Table 1 presents descriptive statistics of the annual data from CRSP. The real risk free
is de�ned as the mean of the di�erence between the 1-Year bond return and annual CPI
growth rate. Real adjusted return (rt) is de�ned as the di�erence between the annual
value weighted adjusted returns and annual CPI growth rate. SD is the standard
deviation.

1946/12/31~2015/12/31 Mean(%) SD(%) Skewness Kurtosis

1-Year Bond Return 5.07 3.9 1.00 4.23
Annual CPI Growth Rate 3.79 3.4 1.81 7.14

Value Weighted Adjusted Returns 12 17 -0.40 3.02
Value Weighted Ex-Returns 8.28 17 -0.41 2.93

Dividend/Price 3.39 1.5 0.47 3.05
Real Adjusted Return 8.22 18 -0.43 3.04

Real Risk Premium (rt − rf ) 6.93 18 -0.43 3.04
Real Risk Free Rate 1.29 - - -

TABLE 2

The Results of Parameter Estimation

Table 2 shows the parameter estimation of the equations (4) - (6). Er is the uncon-
ditional expectation of the risk premium, Eq is the unconditional expectation of the
predictor, φq is the persistence parameter of the predictor, φµ is the persistence param-
eter of the unobserved expected stock return process, σv is the standard deviation of
the predictor's innovations, σω is the standard deviation of the forecast error speci�ed
in (16), m and n are the parameters in (16) which are derived from equations (4) - (6),
ρωv is the correlation between the innovations of the predictor process and the forecast
errors, σr is the standard deviation of stock returns, ρrq is the correlation between the
stock returns and the predictors and σq is the standard deviation of the predictor.

Eq 0.0326 φq 0.9553 m -0.2242 σr 0.1921
Er 0.069 σv 0.004968 n 5.7292 ρr,q -0.0932
φµ 0.1022 σω 0.1813 ρωv -0.6562 σq 0.01681

The appendix describes how to derive this VARMA(1,1) model and estimate it using

MLE.10 Table 2 summarizes the results of the parameter estimation.

10I thank Lubos Pastor for kindly providing matlab codes to perform this estimation.
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Some parameters in the covariance matrix of equations (4) - (6) remain unidenti�ed

because the covariance matrix consisting of three variables can not be exactly estimated

through only two observed variables (see appendix 7.3.4). I, therefore, describe the

solution space of the covariance matrix (Ω) with respect to a speci�c variable. As σzε

play a critical role in determining the conditional expected return, I solve the solution

space of the covariance matrix (Ω) with respect to σzε. The details about how to derive

the solution space of the covariance matrix are explained in the appendix. In short,

the solution space of the covariance matrix with respect to σzε is simpli�ed into the

following linear system:


σ2
z = σ2

r − (Cov (rt, rt−1)− σzε) /φµ

σ2
ε = (Cov (rt, rt−1)− σzε)

(
1− φ2

µ

)
/φµ

s.t. |ρzv| < 1 and |ρvε| < 1

(17)

As σzε = ρzεσεσz, I can only discuss the correlation between the shocks to unob-

servable expected stock returns and the innovation of stock returns (ρzε) instead of the

covariance, σzε. Various studies provide empirical evidence that ρzε < 0. Pastor and

Stambaugh (2009) �nd that this correlation is negative if the stock returns exhibit mean

reversion. Figure 1, Panel A, plots the solution space of (ρvε, ρzv, ρzε) while changes ρzε

from -1 to 0. Panel B projects the solution space onto the plane consisting of ρzv and

ρzε, and panel C describes the relationship between ρzε and ρvε.

Several conclusions can be drawn from the Figure 1. First, based on the data, the

ranges of ρzε, ρzv and ρvε are approximately [-0.66,-0.99], [-0.65, -0.99] and [0.37, 0.94],

respectively. Second, panel B shows that the correlation between the innovations of

stock returns and the shocks to the dividend yield (ρzv) has approximately a negative

relation with the correlation between the innovations of stock returns and the shocks

to the unobservable expected stock returns (ρzε). When ρzε tends to be a perfect

negative correlation, |ρzv| decreases from 0.99 to 0.65. In contrast, the correlation

between the shocks to the unobservable expected stock returns and the innovations of
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the dividend yield (ρvε) positively relates with ρzε. When ρzε tends to be a perfect

negative correlation, ρvε is close to a perfect positive correlation.

For better understanding the e�ect of the imperfect predictive system of stock re-

turns on the life-cycle consumption and portfolio choice, I set up a baseline model,

where ρzε = −0.7, σε = 0.09852, σz = 0.1646, ρzv = −0.723, ρvε = 0.56 and ρzn = 0.15.

4 Optimal Consumption and Portfolio Choice

4.1 The Baseline Model

4.1.1 Parameter Choice

Even though empirical predictability studies are typically done on a monthly or quar-

terly frequency, I solve the model at an annual frequency to maintain comparability

with the existing life-cycle portfolio literature. Carroll (1997) estimates the variances

of the idiosyncratic shocks using data from the PSID, and the baseline simulations use

values close to those: 0.1 for σu and 0.1 for σn. The deterministic component of labor

income is identical to the values used by most life cycle papers, for example, Cocco et al.

(2005), and this setting also facilitates comparisons between this model and its coun-

terparts such as perfect predictor model and i.i.d. stock returns model. The relatively

large estimate for the replacement ratio during retirement (68% of last working period

labor income) arises from using both social security and private pension accounts to

estimate the bene�ts in the PSID data and is consistent with not explicitly modeling

tax-deferred saving through retirement accounts.

The baseline preference speci�cation is taken to capture the observed behavior of

stockholders. Gomes and Michaelides (2005) argue that this is well achieved, when us-

ing a coe�cient of relative risk aversion (γ) equal to 5. The elasticity of inter-temporal

substitution (ψ) is set to be 0.5. These choices are close to the empirical estimates for

the EIS in Vissing-Jorgensen (2002) and the empirical preference parameter estimates

in Gomes et al. (2009). The bequest parameter is set to 2.5 to capture the empirical
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observation that few rich stockholders die with zero �nancial assets. As to the discount

rate, much macroeconomic research estimates this rate to be 1% per quarter or approx-

imate 4% per year. In order to emphasize that the results in this paper does not stem

from extreme assumptions about discount factor, β in the baseline model is 0.96, which

means the discount rate is assumed to be 4% per year.

The parameters used in the imperfect predictive system of the stock market are

listed in Table 1 and 2. In addition, I set a trading cost of 2.9% to re�ect transaction

cost, tax and other implicit trading costs, which implies a risk premium of 4% the same

as in the most of the life-cycle portfolio literature.

There is no estimate of the correlation between the innovations of the unobservable

expected stock returns and the permanent, idiosyncratic earnings shocks to the labor

income (ρnε) in the literature. I therefore set this correlation equal to zero. Angerer

and Lam (2009) note that the correlation between the innovations of stock returns and

transitory part of labor income (ρzu) does not empirically a�ect portfolios and this is

consistent with the simulation results in life cycle models (Cocco et al. (2005)). I set

this correlation at zero. Similarly, I also set ρnv to zero. The correlation between the

permanent earning shocks to the labor income and the innovations of stock returns

(ρzn) is set equal to 0.15 in the baseline model, which follows the same setting as

Michaelides and Zhang (Forthcoming). Table 3 summarizes the parameter values used

in the baseline model.

4.1.2 Consumption and Portfolio Choice in the Baseline Model

Figure 2 plots the life-cycle pro�les of wealth accumulation, consumption, labor income

and share of wealth in stocks by simulating 10,000 individual life histories and reports

the average.

Panel A shows the mean wealth accumulation and consumption over the life cycle in

the presence of a bequest motive and labor income. The wealth accumulation increases

as the investor approaches retirement and reaches the peak at the retirement age. After
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the retirement, the wealth accumulation starts to decrease as agent ages.

TABLE 3

Summary of Parameter Choice

Table 3 presents the parameter choice used in the baseline model. The σz is the standard
error of the stock returns, σε is the standard deviation of the shocks to the unobservable
expected stock return, σv is the standard error of the predictor, σn is the standard error
of the permanent part of labor income, σu is the standard deviation of the transitory
component of labor income, Er is the unconditional expected risk premium, Eq is the
unconditional expected dividend yield, γ is the risk aversion, φq is the persistence pa-
rameter of the dividend yield process, φu is the persistence of the unobservable expected
stock returns, rf is the real risk free rate, ρzε is the correlation between the innovations
of stock returns and the shocks to the dividend yield, ρvz is the correlation between the
shocks to the dividend yield and the innovations of stock returns, ρvε is the correlation
between the innovations of the dividend yield and the shocks to the unobservable stock
returns, ψ is the elasticity of inter-temporal substitution, b is the bequest motive, ρzu is
the correlation between the innovations of stock returns and the transitory component
of labor income, ρvn is the correlation between the innovations of dividend yield process
and the shocks to the permanent part of labor income, ρvu is the correlation between
the innovations of dividend yield process and the transitory component of labor income,
ρεn is the correlation between the innovations of unobservable expected stock returns
and the shocks to the permanent part of labor income. ρεu is the correlation between
the innovations of unobservable expected stock returns and the transitory component
of labor income, E [ln (Nt)] is the expectation of logarithm of the permanent earning
shocks to the labor income, E [ln (Ut)] is the expectation of logarithm of the transitory
earning shocks to the labor income, and β is the discount factor of the utility function.

Parameter Value Parameter Value Parameter Value

σz 0.1646 φq 0.955 ρzu 0.0
σε 0.0985 φµ 0.1022 ρvn 0.0
σv 0.00497 rf 0.0129 ρvu 0.0
σn 0.1 ρzε -0.7 ρεn 0.0
σu 0.1 ρvz -0.723 ρεu 0.0
Er 0.069 ρvε 0.56 E [ln (Nt)] -0.005
Eq 0.0326 ρzn 0.15 E [ln (Ut)] -0.005
γ 5 ψ 0.5 β 0.96

Trading Cost 0.029 b 2.5

Panel A also shows that the consumption tracks labor income very closely before

retirement and the gap between consumption and labor income gets larger as the wealth

deaccumulates, re�ecting that the liquidity constraint becomes less binding. When the

agent approaches death, the consumption path decreases. Panel B graphs the mean
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share of wealth in stocks over the life cycle. Early in life, a higher proportion of wealth

is invested in the risky asset except for at the very beginning of life. As the agent

approaches retirement, the share of wealth in stocks slopes down. After retirement,

the mean stock allocation bounces up a little then keeps highly stable until the agent

reaches the end of life. During the whole life cycle, the mean stock allocation is clearly

less than 1 and �uctuates between 40% and 65%. These �ndings (Panel A and B) are

consistent with Cocco et al. (2005), Gomes and Michaelides (2005) and Michaelides and

Zhang (Forthcoming).

Figure 3 compares the life-cycle pro�les between the baseline model (imperfect pre-

dictor model), perfect predictor model, i.i.d. stock returns model and the Vanguard

TDF model. The Vanguard TDF model's basic recommendation is to invest 90% of

a household's �nancial wealth in stocks until age 40, and start decreasing that share

as retirement approaches reach 50% at age 65. After retirement, the Vanguard TDF

model recommends the investor to continuously reduce the stock market exposure to

approximate 30% and keep this proportion until death. To simulate wealth pro�les for

this case, I take the portfolio rule as exogenous but the household still makes optimal

consumption-saving decisions, taking this portfolio decision into account.

The mean wealth accumulation and consumption shows a notable di�erence be-

tween the baseline model and the other three models. Panel A shows that the wealth

accumulation and the consumption in the baseline model are the highest in all of these

models. This arises here because the imperfection of the predictive system leads the

investor to increase the precautionary saving in the baseline model. Panel B describes

the di�erence in simulated average consumption over the life cycle. The mean consump-

tion of the baseline and perfect predictor model are the highest and the second highest

respectively because the investor takes advantage of predictability. Panel C depicts

the mean share of wealth in stocks over the life cycle. The i.i.d. stock returns model

maintains the highest proportion of wealth in the stock market, except between ages

45 and 65, and the baseline model has the lowest mean share allocation. On the other
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hand, the perfect predictor model falls in between. The glide path of the Vanguard

TDF model is exogenous as it is �xed at each age without considering any information.

The remarkable di�erence of mean portfolio allocation across these models can be

explained by the investment policy functions. Figure 4 shows the share of wealth in

stocks with respect to low, medium and high estimations of the expected stock return

for age 25, 55 and 75 (Panel A, B and C show the share of wealth in stocks for age 25,

Panel D, E and F for age 55, and Panel G, H and I for age 75). The investment policy

functions of the i.i.d. stock returns model vary with age besides the cash on hand, and

does not depend on the other factors. In the baseline and perfect predictor models, the

portfolio allocation can drastically shift up or down depending on the estimation of the

expected stock return besides age and cash on hand. When focusing on the baseline

model and the perfect predictor model, I �nd that the investment policy functions

in the baseline model are always less than that of the perfect predictor model. This

result arises because the imperfection of the predictive system increases the conditional

variance of the next period's return given the same estimation of the expected return.

An empirical puzzle arises that the predictions of portfolio allocation from the i.i.d.

and perfect predictor model have a large gap during the working age over the life cy-

cle. Figure 5 compares the mean share of wealth in stocks from the perfect predictor

model and the imperfect predictor model with the data of SCF 2007. Panel A com-

pares the mean share of wealth in stocks with the empirical portfolio allocation without

considering liquidity. Panel B, however, includes the asset with high liquidity in the

calculation of empirical portfolio allocation. The smoothed empirical portfolio alloca-

tion is calculated by the linear regression method. From Figure 5, we can �nd that the

prediction from the imperfect predictor model matches the SCF data better than the

perfect predictor model, which shows that the imperfection of the predictive system

possibly make an important contribution to explain the observed pattern of household

portfolio choice.
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4.1.3 The Analysis of Model Parameter Uncertainty

Even though the baseline model has considered the imperfection of predictability in

the stock returns, the estimation of parameter such as the unconditional expected risk

premium (Er), persistence of the unobservable expected stock returns (φµ) and standard

error of the unobservable expected stock returns (σε) possibly still have an estimation

error. These parameters materially a�ect the mean wealth accumulation, consumption

and asset allocation when the preference parameters such as risk aversion(γ) and EIS(ψ)

remain unchanged. Therefore, this section measures the sensitivity of the baseline model

to these parameters.

Figure 6 shows the e�ect of a higher unconditional expected risk premium (Er) on

the mean wealth accumulation (Panel A), consumption (Panel B) and share of wealth

in stocks (Panel C) over the life cycle of the baseline model, perfect predictor model and

i.i.d. stock returns model, respectively. For obtaining a higher unconditional expected

risk premium (Er = 7%), I set up a 0% of the Trading Cost. Under the scenario

in which the risk premium is perceived to be higher, the mean wealth accumulation,

consumption and portfolio allocation all shift up. A higher unconditional expected

risk premium makes investor lean to holding stocks, which leads to a higher wealth

accumulation and, then, a higher consumption.

Figure 7 plots how a lower standard error of the unobserved expected stock return

(σε) a�ects the life-cycle pro�les of the baseline model. When the volatility of the

unobserved expected stock return (σε) decreases to 0.005 from 0.0985, the mean wealth

accumulation and consumption decrease, and portfolio allocation shifts up except for

the 45 - 65 age group. A lower σε leads to the unobservable expected stock returns

�uctuating around the unconditional expectation of risk premium within a narrow band,

which makes the imperfect predictive system act as a i.i.d. stock returns. The life-cycle

pro�les are, therefore, closer to that of the i.i.d. stock returns model.

The parameter φµ measures the persistence of the unobservable expected stock

returns. This parameter is of our interest because the predictor used in the predictive
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regression is often a highly persistent process in the classical literature such as Campbell

and Shiller (1988b), Fama and French (1988), Xia (2001) and Cochrane (2005). Figure

8 depicts the life-cycle pro�le given a higher persistence of the unobservable expected

stock returns (Panel A shows the mean wealth accumulation and consumption, and

Panel B describes the mean share of wealth in stocks). From Panel A and B, a higher

persistence makes the agent take advantage of predictability so that the mean share

of wealth in stocks shifts up and seems close to that of the perfect predictor model.

This is reasonable because the unobservable expected stock return is close to the high

persistent predictor process when its persistence is high. On the other hand, the high

persistence of the unobservable expected stock returns makes the investor more willing

to consume in the earlier stage of life, attaining a lower mean wealth accumulation at

retirement. The conclusions drawn from Figure 7 and 8 remind us that it is dangerous

to depend entirely on an imperfect predictor such as dividend yield. The characteristics

of high persistence and low volatility in the dividend yield process can lead to more

aggressive investment polices and inappropriate consumption decisions.

Admittedly, the unconditional expected risk premium and standard error and persis-

tence of the unobservable expected stock return are not the whole story. The variations

due to correlations such as ρzn and ρzε are also crucial in the household �nancial deci-

sions. I analyze these e�ects in the next subsection.

4.2 Hedging Demands

How does the correlations among the di�erent innovations change the results of base-

line model? In the i.i.d. stock returns model and perfect predictor model, the most

important correlation generating quantitatively substantial hedging demands is the cor-

relation between the permanent earnings shocks and the innovations to stock returns

(ρzn), and the other correlations such as ρzε do not materially a�ect the results. Does

this conclusion change when I introduce the imperfection to the predictive regression?
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4.2.1 Correlation between the Shocks to the Unobservable Expected Stock

Returns and the Innovations of Stock Returns

To investigate the importance of the correlation between the shocks to the unobservable

expected stock returns and the innovations of stock returns (ρzε), I vary ρzε from -0.9 to -

0.5 and use the baseline model (ρzε = - 0.7) and perfect predictor model as benchmarks

for comparison. Figure 9 plots the mean wealth accumulation, consumption (Panel

A) and the mean share of wealth in stocks (Panel B) over the life cycle due to the

variation of ρzε. When ρzε tends to be 0 from a perfect negative correlation, the investor

views the dividend yield as a better predictor of the unobserved expected stock return.

From Table 4, we know that a smaller |ρzε| decreases the mean reversion e�ect and

increases the predictability e�ect. This implies that results are close to that from the

perfect predictor model. The investor, therefore, decreases the wealth accumulation

and consumption (Panel A) and increases the stock holding. On the contrary, when

this correlation is close to perfect negative, the mean asset allocation in risky stocks

shifts down and the mean wealth accumulation and consumption move up.

4.2.2 Correlation between the Permanent Earnings Shocks and the Inno-

vations of Stock Returns

I also measure the sensitivity of the correlation between the permanent earnings shocks

and the innovations of stock returns (ρzn). In the baseline model, this correlation is

0.15, a value that re�ects the substantial idiosyncratic risk that exists in labor income

data. I vary this correlation from -0.15 to 0.3.

Figure 10 plots its e�ect of ρzn on the results from the baseline model. From Panel

A, when ρzn changes, I �nd that the mean wealth accumulation and consumption

rarely change. However, in Panel B, I �nd that the investor is more willing to invest

risky stocks when this correlation decreases. The labor income acts more as a risk

less asset when ρzn is small, which leads investors to taking more risk exposure in the

stock market. On the contrary, when this correlation increase, it crowds out the risky
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investment because the labor income acts more like a risky stock. Hence, the portfolio

allocation negatively correlates with ρzn, which is consistent with the results found in

Cocco et al. (2005) and Michaelides and Zhang (Forthcoming).

TABLE 4

Conditional Expectation and Standard Deviation due to Variation of ρzε

Table 4 presents the conditional moments of the unobservable expected stock return
(µt) and the next period's stock return (rt+1) with di�erent correlations between the
shocks to the stock market and the innovations of unobservable expected stock returns
(ρzε). E (µt|rt, qt) is the conditional expectation of the current unobserved expected
stock return based on the current observed return (rt) and dividend yield (qt), σµt|rt,qt
is the conditional standard deviation of the current unobserved expected stock return
based on the current observed return (rt) and dividend yield (qt), and σrt+1|rt,qt is
the conditional standard deviation of next period's stock return based on the current
observed return (rt) and dividend yield (qt).

ρzε E (µt|rt, qt) σµt|rt,qt σrt+1|rt,qt

-0.5 Er − 0.185 [rt − rf − Er] + 0.88 [qt − Eq] 0.091 0.188
-0.7(benchmark) Er − 0.274 [rt − rf − Er] + 0.79 [qt − Eq] 0.082 0.184

-0.9 Er − 0.363 [rt − rf − Er] + 0.69 [qt − Eq] 0.068 0.178

4.2.3 Correlation between the Innovations of Stock Returns and the Shocks

to Dividend Yield

Changing the correlation between the innovations of stock returns and the shocks to

dividend yield (ρzv) does not materially a�ect the mean wealth accumulation and con-

sumption (Figure 11, Panel A), but does signi�cantly change the portfolio allocation

(Figure 11, Panel B). According to Table 5, when |ρzv| close to 0, the predictability

e�ect from dividend yield becomes stronger, while the mean reversion e�ect from the

current return does not change. This makes the investment behavior from the imperfect

predictor model more like that from the perfect predictor model. This conclusion is

di�erent from the result of Michaelides and Zhang (Forthcoming) because ρzv has little

e�ect on determining the conditional moments of the next period's return in the perfect

predictor model.
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TABLE 5

Conditional Expectation and Standard Deviation due to Variation of ρzv

Table 5 presents the conditional moments of unobservable expected stock return (µt)
and the next period's stock return (rt+1) with di�erent correlations between the shocks
to the stock market and the innovations of dividend yield (ρzv). E (µt|rt, qt) is the
conditional expectation of the current unobservable expected stock return based on
the current observed return (rt) and the dividend yield (qt), σµt|rt,qt is the conditional
standard deviation of the current unobservable expected stock return based on the
current observed return (rt) and dividend yield (qt), and σrt+1|rt,qt is the conditional
standard deviation of the following period's stock return based on the current observed
return (rt) and dividend yield (qt).

ρzv E (µt|rt, qt) σµt|rt,qt σrt+1|rt,qt

-0.5 Er − 0.277 [rt − rf − Er] + 0.96 [qt − Eq] 0.082 0.184
-0.723(benchmark) Er − 0.274 [rt − rf − Er] + 0.79 [qt − Eq] 0.082 0.184

-0.9 Er − 0.273 [rt − rf − Er] + 0.65 [qt − Eq] 0.082 0.184

4.2.4 Correlation between the Innovations of the Dividend Yield and the

Shocks to the Unobservable Expected Stock Returns

What happens when the correlation between the innovations of the dividend yield and

the shocks to the unobservable expected stock returns (ρvε) varies? Figure 12, Panel

A plots the mean wealth accumulation and consumption over the life cycle, and Figure

12, Panel B plots the mean share of wealth in stocks. When ρvε increases from 0.2 to

0.8, the mean wealth accumulation and consumption rarely change. The mean share of

wealth in stocks, however, shows a positive correlation with ρvε before retirement. Table

6 shows that the predictability e�ect from the dividend yield becomes strong, while the

mean reversion e�ect from the stock returns only slightly decreases. Therefore, as ρvε

increases, the portfolio choices from the imperfect predictor model tend toward the

predictions from the perfect predictor model.
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TABLE 6

Conditional Expectation and Standard Deviation due to Variation of ρvε

Table 6 presents the conditional moments of the unobservable expected stock return
(µt) and the next period's stock return (rt+1) for di�erent correlations between the
shocks to the unobservable expected stock returns and the innovations of dividend yield
(ρvε). E (µt|rt, qt) is the conditional expectation of the current unobservable expected
stock return based on the current observed return (rt) and the dividend yield (qt),
σµt|rt,qt is the conditional standard deviation of the current unobservable expected stock
return based on the current observed stock return (rt) and the dividend yield (qt), and
σrt+1|rt,qt is the conditional standard deviation of next period's return based on the
current observed return (rt) and the dividend yield (qt).

ρvε E (µt|rt, qt) σµt|rt,qt σrt+1|rt,qt

0.2 Er − 0.28 [rt − rf − Er]− 0.10 [qt − Eq] 0.0831 0.1844
0.4 Er − 0.28 [rt − rf − Er] + 0.39 [qt − Eq] 0.0828 0.1843

0.56(benchmark) Er − 0.27 [rt − rf − Er] + 0.79 [qt − Eq] 0.0820 0.1839
0.8 Er − 0.27 [rt − rf − Er] + 1.37 [qt − Eq] 0.0798 0.1830

5 Optimal TDFs

Financial advisors argue that the share of wealth in stocks should decrease as the in-

vestor approaches retirement and also quantify this as what the i.i.d. stock returns

model predicts. The target date fund (TDF) using the results from the i.i.d. stock

returns model has therefore become quite a popular �nancial advice, commonly recom-

mended by large �nancial advisors like Vanguard TDFs. When the stock returns are

predictable, however, the share of wealth in stocks should change according to market

timing. This is what the perfect predictor model predicts. Retrospecting the �nancial

crisis in 1929, 1997, 2001 and 2008, blindly following the rules suggested by life style

funds for households entering retirement would not have been sound investment advice.

Hence, the enhanced TDF (eTDF) has been proposed to take advantage of changing

market conditions and expectations. This paper, however, shows that it is not easy to

take advantage of changing market conditions and expectations. When the predictor

is imperfect, the investment decision from the perfect predictor model seems over op-

timistic. But, what is the quantitative magnitude of investor welfare from investment
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rules given by the di�erent models? In this section I evaluate the welfare loss of the

investor with respect to the perfect predictor model, the i.i.d. stock returns model and

the Vanguard TDF model when the stock market is modeled as the imperfect predictive

system.

5.1 Welfare Evaluation

To measure welfare changes I use the value functions across di�erent models. Given

that I have solved for saving, portfolio choices and value functions for all periods in the

life cycle, I know that the value functions at a particular age are a su�cient statistic

for welfare e�ects. Let V0
(
xi,t, µ̂t|t

)
be the value function from the baseline model,

and Vn (xi,t, ft) be the value function from the alternative model such as the perfect

predictor model or the i.i.d. stock returns model or the Vanguard TDF model. In these

notations, µ̂t|t is the conditional expectation of unobservable expected stock return and

ft is the observed state factor. The ft in perfect predictor model or Vanguard TDF

model is the dividend yield. In contrast, ft in i.i.d. stock returns model is a null variable

because the policy functions are all the same for the di�erent dividend yield.

I compute consumption certainty equivalent for a particular age as the follows:

E


[
Vn (xi,t, ft)

V0
(
xi,t, µ̂t|t

)]1/(1−γ) − 1

 (18)

where i ∈ Iage and xi,t is the same in both V0 and Vn. This de�nition is the consump-

tion certainty equivalent because I convert the change of the value into the dimension

of expenditure before taking the unconditional expectation. Moreover, this consump-

tion certainty equivalent is computed when stock returns are simulated based on the

imperfect predictive system.

Figure 13 plots the consumption certainty equivalent of the di�erent models relative

to the baseline mode over the life cycle when changing ρvε from 0.2 to 0.8. Panel A

illustrates substantial welfare loss from following the strategy predicted by the perfect

30



predictor model relative to using the optimal investment policy given by the imperfect

predictor model. Panel B shows that the welfare losses are even more substantial from

following the i.i.d. stock returns model, and Panel C reports that welfare loss from

taking the investment rules from the Vanguard TDF model is in the middle.

Several observations can be drawn based on Figure 13. First, the welfare losses are

economically signi�cant: they vary from 2% to 4% of consumption equivalent when the

investor follows the strategy from the perfect predictor model, from 5% to 11% when

the investor follows the strategy from the i.i.d. stock returns model and from 2% to

6% when investor follows the strategy from the Vanguard TDF model. Second, these

welfare losses positively correlated with ρvε. When the predictor is close to perfect

positive (ρvε ≈ 1), the welfare loss becomes even larger. Third, the welfare losses from

the i.i.d. stock returns model and perfect predictor model tend to get maximized at

around age 50, whereas average wealth accumulation is maximized at the exogenous

retirement age of 65. On the contrary, the welfare losses from the Vanguard TDF model

has a peak at around age 70.

To better understand these welfare shapes and magnitudes, it is helpful to recall

that given the preference for consumption smoothing, welfare is increasing in average

consumption and decreasing in the volatility of consumption. I can therefore obtain an

insight on where the welfare di�erences are coming from by comparing the mean change

of consumption and the change of standard deviation of consumption over the life cycle.

To do so, I de�ne the average change of consumption for a particular age as Et

(
C1−C2

C2

)
,

where C1 is the consumption stream from the �rst model and C2 is from the second

model, and the change of standard deviation of consumption as SD(C1)−SD(C2)
SD(C2)

.

Figure 14 plots the mean change of consumption and the change of standard de-

viation of consumption for the baseline model relative to the perfect predictor model

(Panels A and B), the i.i.d. stock returns model (Panels C and D) and the Vanguard

TDF model (Panels E and F). The I.I.D model produces the largest change in consump-

tion volatility over the working life. Given the preferences for smoother consumption,
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this increased consumption inequality translates into a welfare loss that essentially gets

maximized at mid life (around age 50), justifying the peak in welfare losses depicted in

Figure 14.

The perfect predictor model on the other hand generates a lower mean consumption

change over the life cycle. Since the portfolio rules are more stable than i.i.d. stock re-

turns model, consumption variability is actually lower with the perfect predictor model

relative to the i.i.d. stock returns model but higher relative to the baseline model.

When compared to the Vanguard TDF model, the welfare loss approaches the peak

at about age 70 (see Figure 14, Panel E) because the mean change of consumption

reaches the summit at age 70 (Figure 14, Panel E and F).

6 Conclusions

In this paper, I jointly analyze the implications of an imperfect predictive system, undi-

versi�able labor income risk and exogenously imposed liquidity constraints on optimal

consumption and portfolio decisions over the life cycle. In the presence of an imperfect

predictor of the unobservable expected stock returns, the optimal portfolio choice is

shown to be more conservative than that predicted by an i.i.d. and perfect predictor

model when calibrated to the observed data from 1946 to 2015. Di�erent from Wachter

and Yogo (2010) which use the nonhomothetic utility over basic and luxury goods

to generate balanced portfolios, this paper generates the balanced portfolios through

introducing the imperfection to the predictor of stock returns. Compared with the

SCF 2007, the imperfect predictor model matches the data better than the i.i.d. stock

returns model and the perfect predictor model. Moreover, when the imperfection is

introduced into the perfect predictor model, almost all correlations (ρzε, ρzv, ρzn, ρvε)

become important, which is di�erent from one of the conclusion of Michaelides and

Zhang (Forthcoming). Hence, a �nancial advisor should pay more attention to these

correlations when giving investment advice.

To measure the bene�ts of taking the imperfect predictor into account, I compare
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the welfare loss of the perfect predictor, i.i.d. and Vanguard TDF model relative to

baseline model. The largest welfare loss is obtained from following the rules predicted

by the i.i.d. stock returns model. The perfect predictor model has the smallest welfare

loss, and the Vanguard TDF model is in the middle. Hence, an investment strategy

uniquely relying on a single information source or the unconditional expected stock

return leads to an incorrect investment decision and substantial welfare loss.

Future directions of research include the explicit introduction of ambiguity aversion

in preferences, ambiguity in the parameters such as the risk premium and persistence

of the unobservable expected return process, Bayesian posterior distributions for the

parameters (Barberis (2000), Xia (2001) and Pastor and Stambaugh (2009)), a stochas-

tic volatility in stock returns and an explicit model of housing. All these extensions

will require additional computational power to achieve the desired required solution

accuracy, but will further improve our understanding of life cycle portfolio choice under

uncertainty and provide reasonable advice to billions of households increasingly making

their own �nancial decisions.
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7 Appendix

7.1 A Theorem of Multivariate Normal Distribution

Theorem 7.1 (Tsay (2010), Ch11): Suppose that x and y are two random vectors

such that their joint distribution is multivariate normal. In addition, assume that the

diagonal block covariance matrix Σww is non-singular for w = x, y. Then,

1. E(x|y) = µx + ΣxyΣ
−1
yy (y − µy)

2. V ar(x|y) = Σxx − ΣxyΣ
−1
yy Σ′yx

This theorem provides us with an algorithm of �ltering the unobservable state, x, from

the observable variables y.

7.2 De�nitions and Notations

• µt is the unobservable expected stock return

• qt is the observable dividend yield.

• Er is the unconditional expectation of µt;

• Eq is the unconditional expectation of qt;

• dt =

 rt

qt

, Dt = (d0, d1, ..., dt), where Dt is the full history of dt;

• et = E (dt|µt, Dt−1) is the expectation of observable dt conditional on the current

unobservable µt and historical observed values of dt up to time t− 1;

• µ̂t|t−1 = E (µt|Dt−1) is the expectation of unobservable µt conditional on the

historical observed values of dt up to time t− 1;

• d̂t|t−1 = E (dt|Dt−1) is the expectation of observable dt conditional on the historical

observed values of dt up to time t− 1;
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• µ̂t|t = E(µt|Dt) is the estimation of unobservable µt conditional on the historical

observed values of dt up to time t;

• Gt = Cov (dt, µt|Dt−1) is the covariance between the observable variables dt and

the unobservable µt conditional on the historical observed data up to time t− 1.

• Pt = V ar (µt|Dt−1) is the variance of unobservable µt conditional on the historical

observed data up to t− 1.

• Rt = V ar (dt|µt, Dt−1) is the variance of dt conditional on the current unobservable

expected stock return (µt) and the historical observed data up to time t− 1.

• Qt = V ar (µt|Dt) is the variance of the unobservable µt conditional on the histor-

ical observed data up to t.

• St = V ar(dt|Dt−1) is the variance of dt conditional on the historical observed data

up to time t− 1.

7.3 Maximum Likelihood Estimation

Since the expected stock return (µt) is unobservable, the classical maximum likelihood

estimation needs a modi�cation that rewrites the VAR (24) to make it only involve

the observable variables, the stock returns (rt) and the predictor (qt). For doing this

modi�cation, I follow the same idea of Pastor and Stambaugh (2009) and use this

method to estimate the parameters of the imperfect predictive system conditional on all

the observed data. The �rst step is to set up the recursive formula to update conditional

moments of the unobservable expected stock return using the observed data.

7.3.1 Starting the Recursion

The recursion begins with µ0|D0, where D0 is the empty set. At time 0, since there

are no observations of dt, I use the unconditional mean of µt as the estimation of
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unobservable expected stock returns, µ̂0|0 = E(µ0|D0) = Er. Similarly, the Q0 =

V ar (µ0|D0) = Vµµ is the unconditional variance of µt.

At time 0, I can predict the moments of d1 conditional on D0. Assuming that the

process of µt is stationary, I obtain E (µ1|D0) = αq + φµE (µ0|D0). This implies:

µ̂1|0 = E (µ1|D0) = Er;

P1 = V ar (µ1|D0) = Σµµ;

and

d̂1|0 = E (d1|D0) =

 0

αq

+ E


 µ0

q0

 |D0

 =⇒

d̂1|0 =

 Er

Eq

and S1 = V ar (d1|D0) =

 Σrr Σrq

Σqr Σqq

.
As (d1|D0) and (µ1|D0) follow bi-variate normal distribution, I can obtain the fol-

lowing through applying theorem 7.1;

e1 = E (d1|µ1, D0) =

 Er

Eq

+

 Σrµ

Σqµ

Σ−1µµ
(
µ1 − µ̂1|0

)
and

R1 = V ar (d1|µ1, D0) =

 Σrr Σrq

Σqr Σqq

−
 Σrµ

Σqµ

Σ−1µµ

[
Σrµ Σqµ

]
Hence, I �nd the formulae for e1 and R1 as follows:

e1 = d̂1|0 +G1P
−1
1

(
µ1 − µ̂1|0

)
(19)

where G1 = Cov (d1, µ1|D0) =

 Σrµ

Σqµ


and

R1 = S1 −G1P
−1
1 G′1 (20)
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where S1 =

 Σrr Σrq

Σqr Σqq

 and P−11 = Σ−1µµ

7.3.2 Updating via Bayes Theorem

Recalling the conditional probability formula, I can obtain the following equation,

f (µ1|d1, D0) = f(d1|µ1,D0)f(µ1|D0)
f(d1|D0)

. Since D1 = (d1, D0), I have a probability density

function as follows.

f (µ1|d1, D0) ∝ f (d1|µ1, D0) f (µ1|D0) (21)

Now, I expand the right hand side of equation (21) as follows

f

([
r1 q1

]
|µ1, D0

)
f (µ1|D0) =(

1√
2π

)2
|P1|−1|R1|−1exp

{
−1

2

[
(d1 − e1)′R−1 (d1 − e1) +

(
µ1 − µ̂1|0

)
P−1

(
µ1 − µ̂1|0

)]}
∝ exp

{
−1

2

(
d1 − d̂1|0 +G1P

−1
1

(
µ1 − µ̂1|0

))′
R−1

(
d1 − d̂1|0 +G1P

−1
1

(
µ1 − µ̂1|0

))
+
(
µ1 − µ̂1|0

)
P−1

(
µ1 − µ̂1|0

)}
After rearranging the terms and ignoring the irrelevant quadratic terms of d1, I can

obtain the follows:

f

(
[ r1, q1 ]|µ1, D0

)
f (µ1|D0) ∝

exp

{
−1

2

[(
d1 − d̂1|0

)′
G1P

−1
1 R−1

(
µ1 − µ̂1|0

)
+
(
µ1 − µ̂1|0

)′ (
P−11

)′
G′1R

−1
(
d1 − d̂1|0

)
+
(
µ1 − µ̂1|0

)′ (
P−11

)′
G′1R

−1G1P
−1
1

(
µ1 − µ̂1|0

)
+
(
µ1 − µ̂1|0

)
P−1

(
µ1 − µ̂1|0

)]}
.

Since µt, Pt and
(
d1 − d̂1|0

)′
G1P

−1
1 R−1 are scalars, I can rewrite this formula as

f

(
[ r1, q1 ]|µ1, D0

)
f (µ1|D0) ∝

exp
{
−1

2

[
2P−11 G′1R

−1
(
d1 − d̂1|0

) (
µ1 − µ̂1|0

)
+(

P−11 +
(
P−11

)′
G′1R

−1G1P
−1
1

) (
µ1 − µ̂1|0

)2]}
= exp

{
−1

2

[
2P−11 G′1R

−1
(
d1 − d̂1|0

) (
µ1 − µ̂1|0

)
+P−11 P1

(
P−11 +

(
P−11

)′
G′1R

−1G1P
−1
1

)
P1P

−1
1

(
µ1 − µ̂1|0

)2]}
= exp

{
−1

2

[
2P−11 G′1R

−1
(
d1 − d̂1|0

) (
µ1 − µ̂1|0

)
+

P−11 (P1 +G′1R
−1G1)P

−1
1

(
µ1 − µ̂1|0

)2]}
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∝ exp

{
−

[
µ1−µ̂1|0−P1(P1+G′1R

−1G1)
−1
G′1R

−1(d1−d̂1|0)
]2

2P1(P1+G′1R
−1G1)

−1
P1

}
.

This is the kernel of the normal distribution again. Hence, after the Bayesian update,

conditional probability density of µt is still a normal distribution, and its conditional

moments are:

µ̂1|1 = E (µ1|D1) = µ̂1|0 + P1

(
P1 +G′1R

−1
1 G1

)−1
G′1R

−1
1

(
d1 − d̂1|0

)
(22)

and

V ar (µ1|D1) = Q1 = P1

(
P1 +G′1R

−1
1 G1

)−1
P1 (23)

For �nding all conditional probability densities and moments of µt for t = 2, ... , T, I

rewrite the equations (4) - (6) as follows:


rt − rf − Er

qt − Eq

µt − Er

 =


0 0 1

0 φq 0

0 0 φµ



rt−1 − rf − Er

qt−1 − Eq

µt−1 − Er

+


zt

vt

εt

 (24)

Assuming the VAR represented by (24) is stationary, I obtain the following:

E (µt − Er|Dt−1) = φµE (µt−1 − Er|Dt−1) =⇒

E (µt|Dt−1) = (1− φµ)Er + φµE (µt−1|Dt−1).

Since the µt is unobservable, I can not delete the E(.) in E (µt−1|Dt−1). Simplifying

the formula above, I rewrite it as:

µ̂t|t−1 = (1− φµ)Er + φµµ̂t−1|t−1 (25)

Similarly, I can rewrite d̂t|t−1 as the following:

d̂t|t−1 = E (dt|Dt−1) =

 µ̂t−1|t−1

(1− φq)Eq + φqqt−1

 (26)
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and

Pt = V ar (µt|Dt−1) = φ2
µV ar (µt−1|Dt−1) + σ2

ε = φ2
µQt−1 + σ2

ε (27)

Next, for getting the other update formulae, I take the variance on both sides of the

VAR (24).

V ar



rt

qt

µt

 |Dt−1

 =


0 0 1

0 φq 0

0 0 φµ


,

V ar



rt−1 − Er

qt−1 − Eq

µt−1 − Er

 |Dt−1




0 0 1

0 φq 0

0 0 φµ

+V ar



zt

vt

εt

 |Dt−1



=


0 0 1

0 φx 0

0 0 φµ


, 

0 0 0

0 0 0

0 0 Qt−1




0 0 1

0 φq 0

0 0 φµ

+


σ2
z ρzvσzσv ρzεσzσε

σ2
v ρvεσvσε

σ2
ε


=

 St Gt

G′t Pt


Hence, I obtain

et = E (dt|µt, Dt−1) = d̂t|t−1 +GtP
−1
t

(
µt − µ̂t|t−1

)
(28)

Rt = V ar (dt|µt, Dt−1) = St −GtP
−1
t G′t (29)

and, the conditional moments of µt

µ̂t|t = E (µt|Dt) = µ̂t|t−1 + Pt
(
Pt +G′tR

−1
t Gt

)−1
G′tR

−1
t

(
dt − d̂t|t−1

)
(30)

Qt = V ar (µt|Dt) = Pt
(
Pt +G′tR

−1
t Gt

)−1
Pt (31)
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7.3.3 Maximum Likelihood Estimation of Parameter

Denote [mt, nt] = Pt
(
Pt +G′tR

−1
t Gt

)−1
G′tR

−1
t . Then, according to (30), I have

µ̂t|t = µ̂t|t−1 + [mt, nt]


 rt − rf − µ̂t−1|t−1

xt − Et−1(qt)




= (1− φµ)Er + φµµ̂t−1|t−1 +mt

(
rt − rf − µ̂t−1|t−1

)
+ ntvt

The last equality hold because µ̂t|t−1 = (1− φµ)Er + φµµ̂t−1|t−1 (equation 25).

Then, I rewrite this formula as follows.

µ̂t|t = (1− φµ)Er + (φµ −mt) µ̂t−1|t−1 +mt(rt − rf ) + ntvt (32)

Next, I de�ne the forecast error of rt+1− rf conditional on information at time t as

ωt+1 = (rt − rf )− Et (rt − rf ) (33)

Since rt+1 − rf = µt + zt+1 (equation (5)), I have Et (rt+1 − rf ) = Et (µt) = µ̂t|t.

Now, replacing Et (rt − rf ) with µ̂t|t in (33), I obtain ωt+1 = rt+1 − rf − µ̂t|t.

Rearrange this equation, I obtain as the following:

rt+1 − rf = (1− φµ)Er + φµ(rt − rf ) + ntvt − (φµ −mt)ωt + ωt+1 (34)

Combining (34) with (6), I obtain a new equation system consisting of only observ-

able data as follows:
rt+1 − rf = (1− φµ)Er + φµ(rt − rf ) + ntvt − (φµ −mt)ωt + ωt+1

qt+1 = αq + φqqt + vt+1

(35)

In steady state, I can delete the time index of mt and nt and rewrite the equation

system (35) as the following VARMA(1,1) model.
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 rt − rf

qt

−
 Er

Eq

 =

 φµ 0

0 φq



 rt−1 − rf

qt−1

−
 Er

Eq


+

 − (φµ −m) n

0 0


 ωt−1

vt−1

+

 ωt

vt


(36)

Now, de�ne the state variable as ξt = (ωt, vt, ωt−1, vt−1)
′. This VARMA(1,1) model

can be rewritten as a state space model consisting of a observation equation and a state

equation and estimated by the Kalman Filter algorithm.


d∗t = Ad∗t−1 +Hξt

ξt = Fξt−1 +

 et

0

 (37)

where d∗t = dt − [Er, Eq]
′, A =

 φµ 0

0 φq

, H12 =

 − (φµ −m) n

0 0

 ,

F =

 02×2 02×2

I2×2 02×2

, H =

[
I2×2 H12

]
, et = [ωt, vt]

′, and V ar(et) = Σ∗.

Given a sample of dt, the joint likelihood function of the state space model (37)

is L =
T

Π
t=1
f
(
d∗t |d∗t−1

)
, where f

(
d∗t |d∗t−1

)
is the conditional probability density of d∗t .

I, therefore, can estimate the parameters by maximizing the following log-likelihood

function11:

−2ln(L) =
T

Σ
t=1

(
ln|Vt|t−1|+

[
d∗t − d̂∗t|t−1

]′
V −1t|t−1

[
d∗t − d̂∗t|t−1

])
(38)

The terms in equation (38) are de�ned as the following:

• V ar(rt) = σ2
r = (1− φµ)−1

[
nσ2

vn+ (1− φ2
µ +m2)σ2

ω + 2mσvωn
]

12;

11This log-likelihood function (38) is based on the logarithm of the equation (13.4.1) from Hamilton
(1994)

12Taking variance on both sides of (34), I obtain σ2
r = φ2µσ

2
r − 2φµ(φµ − m)σ2

ω + (φµ − m)2σ2
ω +
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• Cov(rt, qt) = σqr = (1− φµφq)−1 [φqσ
2
vn+ (1− (φµ −m)φq)σvω] 13;

• V ar(qt) = σ2
q = (1− φ2

q)
−1σ2

v ;

• d̂∗t|t−1 = Et−1(d
∗
t ) = Ad∗t−1 +H12Σ

∗V −1t−1|t−2

[
d∗t−1 − d̂∗t−1|t−2

]
; and

• Vt|t−1 = Vt−1(d
∗
t ) = H12

(
Σ∗ − Σ∗V −1t−1|t−2Σ

∗
)
H ′12 + Σ∗

The formula of updating d̂∗t|t−1 is from taking Et−1(·) on the both sides of the observation

equation of (37).

d̂∗t|t−1 = Et−1(d
∗
t ) = Ad∗t−1 +Hξ̂t|t−1

= Ad∗t−1 +HFξ̂t−1|t−1

= Ad∗t−1 +

[
H12 02×2

](
ξ̂t−1|t−2 + Σξd∗V

−1
t−1|t−2

[
d∗t−1 − d̂∗t−1|t−2

])

= Ad∗t−1+

[
H12 02×2

]


ω̂t−1|t−2

v̂t−1|t−2

ω̂t−2|t−2

v̂t−2|t−2


+

[
H12 02×2

]
Σξd∗V

−1
t−1|t−2

[
d∗t−1 − d̂∗t−1|t−2

]
.

As

 ω̂t−1|t−2

v̂t−1|t−2

 = 0 and

[
H12 02×2

]
Σξd∗ = H12Σ

∗, this equation can be simpli�ed

as:

d̂∗t|t−1 = Ad∗t−1 +H12Σ
∗V −1t−1|t−2

[
d∗t−1 − d̂∗t−1|t−2

]
.

As to Vt|t−1, the update formula is from taking V ar(·) on both sides of state equation

of (37).

Vt|t−1 = Vt−1(d
∗
t ) = HFV art−1(ξt)F

′H ′ +HFV ar

 et

0

F ′H ′

=

[
I2×2 H12

] 02×2 02×2

I2×2 02×2

(Σξξ − ΣξdV
−1
t−1|t−2Σ

′
dξ

) 02×2 I2×2

02×2 02×2


 I2×2

H12


+

[
I2×2 H12

] 02×2 02×2

I2×2 02×2

Σ∗

 02×2 I2×2

02×2 02×2


 I2×2

H12

.
n2σ2

v + σ2
ω − 2(φµ −m)nσvω + 2φµnσvω. Solve this equation for σ2

r
13Taking covariance between rt and qt based on (35), I obtain the equation σqr = φqφµσxr+nφqσ

2
v−

(φµ −m)φqσvω + σvω. Then, σqr is from solving this equation.
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Since

[
I2×2 H12

] 02×2 02×2

I2×2 02×2

 = H12, I have:

Vt|t−1 = H12

(
Σ∗ − Σ∗V −1t−1|t−2Σ

∗
)
H ′12 + Σ∗.

Last, the necessary initial values for solving the log-likelihood function (38) are:

• d̂∗1|0 = 0; and

• V1|0 = V ar(dt) =

 V ar(rt) Cov(rt, qt)

V ar(qt)

.
7.3.4 Unidenti�ed Covariance Matrix

Through the MLE, I can obtain the estimation of parameters in VARMA model (16).

Our goal, however, is to �nd the covariance matrix of equations (4) - (6), Ω =


σ2
z σzv σzε

σ2
v σvε

σ2
ε

.
Unfortunately, in Ω, σvv is the only term that can be identi�ed. As to estimate the

other terms in Ω, obviously, a good starting point is the moments because the moments

of VARMA model (16) should equal to that of the original VAR model (24). The

moments we need in VARMA model can be computed as follows:

• σ2
r = (1− φµ)−1

[
nσ2

vn+ (1− φ2
µ +m2)σ2

ω + 2mσvωn
]

• σqr = (1− φµφq)−1 [φqσ
2
vn+ (1− (φµ −m)φq)σvω]

• Cov (rt, rt−1)

= Cov (φµ(rt−1 − rf ) + nvt−1 − (φµ −m)ωt−1 + ωt, rt−1 − rf )

= φµσ
2
r + nCov (vt−1, rt−1 − rf )− (φµ −m)Cov (ωt−1, rt−1 − rf )

• Cov (rt−1, qt)

= Cov (rt−1, φqqt−1 + vt)

= φqCov (rt−1, qt−1)
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• Cov (rt, qt−1)

= Cov (φµrt−1 + nvt−1 − (φµ −m)ωt−1 + ωt, qt−1)

= φµσrq + nCov (vt−1, qt−1)− (φµ −m)Cov (ωt−1, qt−1)

On the other hand, based on the VAR model (24), I can write down the following

linear equation system about the moments as follows:

σ2
r

σqr

Cov (rt, rt−1)

Cov (rt−1, qt)

Cov (rt, qt−1)


=



1/
(
1− φ2

µ

)
1 0 0 0

0 0 φq/ (1− φµφq) 1 0

φµ/
(
1− φ2

µ

)
0 0 0 1

0 0 φ2
q/ (1− φµφq) φq 0

0 0 1/ (1− φµφq) 0 0





σ2
ε

σ2
z

σvε

σzv

σzε


Since both the VARMA (16) and VAR (24) models describe the same thing, their

moments must be the same as each other. This linear equation system, therefore,

becomes solvable, when I replace the right hand side of this equation with the corre-

sponding calculation from the VARMA model (16).

The rank of this linear equation system is, however, four because the second row can

be eliminated by the fourth row, which makes this linear equation system be reduced

into:



σ2
r = σ2

ε/
(
1− φ2

µ

)
+ σ2

z

σqr = φqσvε/ (1− φµφq) + σzv

Cov (rt, rt−1) = σzε + φµσ
2
ε/
(
1− φ2

µ

)
Cov (rt, qt−1) = σvε/ (1− φµφq)

(39)

(39) shows that this linear equation system has not unique solution but a solution

space. For obtaining the solution space, I represent this linear equation system (39)

with respect to σzε, because this parameter is important in the estimation. Then, it

becomes as follows:
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
σ2
z = σ2

r − (Cov (rt, rt−1)− σzε) /φµ

σ2
ε = (Cov (rt, rt−1)− σzε)

(
1− φ2

µ

)
/φµ

s.t. ρzv < 1 and ρvε < 1

.
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FIGURE 1

Solution Space of MLE

Figure 1 presents the solution space from MLE method. Panel A shows a 3D graph of the relationship

between ρzv, ρzε and ρvε, where ρzv is the correlation between shocks to stock returns and innovations

of predictor, ρvε is the correlation between innovations of predictor and unobservable expected return,

and ρzε is the correlation between innovations of stock returns and unobservable expected return.

Panel B is the projection of the 3-D graph in panel A on the plane of ρzv and ρzε. Similarly, panel C

project the solution space on the plane of ρzε and ρvε.
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FIGURE 2

Mean Life-Cycle Pro�les for Benchmark Model

Figure 2, panel A presents the mean wealth, consumption and labor income over the life cycle by

simulating 6000 individual life histories. Panel B shows the mean share of wealth in stocks over the

life cycle.
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FIGURE 3

Comparison of Life-Cycle Pro�les among Di�erent Models

Figure 3, panel A presents the mean wealth over the life cycle for four di�erent models, where PP

is the perfect predictor model, i.i.d. is the i.i.d. stock returns model and Vanguard represents the

Vanguard TDF model. Panel B and C describe the mean consumption and share of wealth in stocks

for the corresponding models.
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FIGURE 4

Investment Policy Function for Di�erent Expected Stock Returns

Figure 4 presents the share allocation policy functions of di�erent states, ages and models. The �rst

row (Panel A, B and C) describes the share allocation policy functions between the baseline model

(imperfect predictor model), perfect predictor model (PP model) and i.i.d. stock returns model for

a 25-year-old investor when the estimations of the expected stock return is low, median and high

respectively. The second row (Panel D, E and F) displays the share allocation policy functions for a

55-year-old agent, and the last row (Panel G, H and I) shows the share allocation policy functions for

a 75-year-old agent.
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FIGURE 5

The Mean Share of Wealth in Stocks from the Baseline Model, Perfect

Predictor Model and SCF Data

Figure 5, panel A and B present the mean share of wealth in stocks (α) between the baseline model,

perfect predictor model (PP model) and SCF data. The only di�erence between panel A and B is the

de�nition of the empirical α from SCF data. The empirical α in panel A rules out the asset with high

liquidity and is de�ned as equity/(equity+bonds). In contrast, in panel B, the empirical α includes the

asset with high liquidity and is calculated by equity/(equity+bonds+liquidity). I compute smoothed

empirical α through running weighted linear least squares and a 2nd degree polynomial model with a

span of 20% at each age.
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FIGURE 6

The Life-Cycle Pro�les with High Risk Premium

Figure 6, panel A, presents the comparison of mean wealth between the baseline model (imperfect

predictor model), perfect predictor model (PP model) and i.i.d. stock returns model over the life

cycle. Panel B reports the di�erence of mean consumptions between these models. Panel C compares

mean share of wealth (α) in stocks.
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FIGURE 7

Life-Cycle Pro�le Comparison under the Low Volatility of Unobserved

Expected Stock Returns

Figure 7, panel A, presents how the low volatility of unobserved expected stock returns σε a�ects the

mean wealth accumulation and consumptions over the life cycle. Panel B shows the change of mean

share of wealth in stocks from the baseline model when the volatility of unobserved expected stock

returns is low.
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FIGURE 8

The E�ect of High Persistence of Unobservable Expected Stock Return

(φµ) on the Life Cycle Pro�les

Figure 8 presents how the persistence of unobservable expected stock returns (φµ) a�ects mean wealth

accumulation, consumption and portfolio choice. Panel A shows the mean wealth accumulation and

consumption by varying φµ from 0.01 to 0.9. Panel B shows the mean share of wealth in stocks due

to changing φµ.
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FIGURE 9

The E�ect of Correlation between the Shocks to Stock Returns and

Innovations of Unobservable Expected Stock Returns(ρzε)

Figure 9, panel A presents the e�ect of correlation between the shocks to stock returns and the innova-

tions of unobserved expected stock returns (ρzε) on the mean wealth accumulation and consumption,

and compares that with the perfect predictor model (PP model). Panel B shows its e�ect on mean

share of wealth in stocks.
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FIGURE 10

The E�ect of Correlation between the Shocks to Stock Returns and the

Permanent Part of Labor Income (ρzn)

Figure 10, panel A presents the e�ect of correlation between the shocks to stock returns and the

permanent part of labor income (ρzn) on the mean wealth and consumption. Panel B depicts the

change in the mean share of wealth in stocks due to the variation of ρzn.
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FIGURE 11

The E�ect of Correlation between the Shocks to Stock Returns and the

Innovations of Predictor (ρzv)

Figure 11, panel A presents the e�ect of correlation between the shocks to stock returns and the

innovations of predictor (ρzv) on the mean wealth accumulation and consumption. Panel B exhibits

its e�ect on the mean share of wealth in stocks.
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FIGURE 12

The E�ect of Correlation between the Innovations of Predictor and the

Shocks to the Unobservable Expected Stock Returns (ρvε)

Figure 12, panel A presents the e�ect of correlation between the innovations of predictor and the shocks

to the unobservable expected stock returns (ρvε) on the mean wealth accumulation and consumption.

Panel B describes the change of the mean share of wealth in stocks by varying ρvε.
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FIGURE 13

Welfare Evaluation

Figure 13 presents the change of consumption certainty equivalent of the baseline model with respect

to the perfect predictor model (PP model), i.i.d. stock returns model and the Vanguard TDF model

(Vanguard model) when changing the correlation between the shocks to the unobservable expected

stock returns and the innovations of predictor (ρvε). Panel A shows the welfare loss from the perfect

predictor model when ρvε varies. Panel B plots the welfare loss from the i.i.d. stock returns model

when changing ρvε. Panel C gives the welfare loss from the Vanguard TDF model for di�erent ρvε.
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FIGURE 14

Consumption Evaluation

Figure 14 presents the average change of consumption and standard deviation of consumption over the

life cycle. Panel A, C and E describe the mean change of consumption in the baseline model compared

to the perfect predictor model (Panel A), the i.i.d. stock returns model (Panel C) and the Vanguard

TDF model (Panel E). The mean change of consumption is de�ned as Et

(
C1−C2

C2

)
. Panel B, D and F

show the change of standard deviation of consumption for the corresponding models. The change of

standard deviation is de�ned as
(
sd[C1]−sd[C2]

sd[C2]

)
.
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